Chinese Journal of Nursing ›› 2021, Vol. 56 ›› Issue (2): 212-217.DOI: 10.3761/j.issn.0254-1769.2021.02.009
• Special Planning——Nursing Informationalization • Previous Articles Next Articles
QU Chaoran,WANG Qing,HAN Lin(
),JIANG Xiaoying
Received:2020-06-18
Online:2021-02-15
Published:2021-02-07
Contact:
Lin HAN
通讯作者:
韩琳
作者简介:曲超然:男,本科(硕士在读),E-mail: qvchaoran@outlook.com
基金资助:QU Chaoran, WANG Qing, HAN Lin, JIANG Xiaoying. A literature review on the application of machine learning algorithms in pressure injury management[J]. Chinese Journal of Nursing, 2021, 56(2): 212-217.
曲超然, 王青, 韩琳, 姜小鹰. 机器学习算法在压力性损伤管理中的应用进展[J]. 中华护理杂志, 2021, 56(2): 212-217.
Add to citation manager EndNote|Ris|BibTeX
URL: https://zh.zhhlzzs.com/EN/10.3761/j.issn.0254-1769.2021.02.009
| [1] | Gefen A, Weihs D . Cytoskeleton and plasma-membrane damage resulting from exposure to sustained deformations:a review of the mechanobiology of chronic wounds[J]. Med Eng Phys, 2016,8(9):828-833. |
| [2] | Hartmann CW, Solomon J, Palmer JA , et al. Contextual facilitators of and barriers to nursing home pressure ulcer prevention[J]. Adv Skin Wound Care, 2016,29(5):226-238. |
| [3] | 江小琼, 蔡福满, 侯祥庆 , 等. 皮肤温度监测在压力性损伤风险预警中的应用研究[J]. 中华护理杂志, 2020,55(1):32-38. |
| Jiang XQ, Cai FM, Hou XQ , et al. Application research of skin temperature monitoring in early warning of pressure injury[J]. Chin J Nurs, 2020,55(1):32-38. | |
| [4] | Sun X, Ni P, Wu M , et al. A clinical epidemiological profile of chronic wounds in wound healing department in Shanghai[J]. Int J Low Extremity Wounds, 2017,16(1):36-44. |
| [5] | European Pressure Ulcer Advisory Panel, National Pressure Injury Advisory Panel, Pan Pacific Pressure Injury Alliance. Prevention and treatment of pressure ulcers/injuries:clinical practice guideline[S]. EPUAP/NPIAP/PPPIA: 2019. |
| [6] | Westbrook JI, Ling L, Lehnbom EC , et al. What are incident reports telling us? A comparative study at two Australian hospitals of medication errors identified at audit,detected by staff and reported to an incident system[J]. Int J Qual Health Care, 2015,27(1):1-9. |
| [7] | 张文娴, 崔妙玲, 应燕萍 . 构建医院护理差错及不良事件报告系统的研究进展[J]. 中华护理杂志, 2008,43(12):1142-1144. |
| Zhang WX, Cui ML, Ying YP . Establishment of nursing errors and adverse events reporting system in hospitals[J]. Chin J Nurs, 2008,43(12):1142-1144. | |
| [8] | 陈越, 皮红英, 宋杰 , 等. 临床决策支持系统在脑卒中患者护理中的应用进展[J]. 中华护理杂志, 2019,54(12):1898-1901. |
| Chen Y, Pi HY, Song J , et al. Research progress on clinical decision support system for stroke nursing[J]. Chin J Nurs, 2019,54(12):1898-1901. | |
| [9] | 丁四清, 陆晶, 秦春香 , 等. 数据挖掘在护理不良事件管理中的应用进展[J]. 中华护理杂志, 2019,54(6):873-877. |
| Ding SQ, Lu J, Qin CX , et al. Application progress on data mining for nursing adverse event management[J]. Chin J Nurs, 2019,54(6):873-877. | |
| [10] | 李萍, 史婷奇, 陆瑶 , 等. 护士长决策护理质量指标管理系统的构建[J]. 中华护理杂志, 2019,54(10):1540-1545. |
| Li P, Shi TQ, Lu Y , et al. Quality index management system for head nurse's decision based on business intelligence[J]. Chin J Nurs, 2019,54(10):1540-1545. | |
| [11] | 夏冬云, 史婷奇, 陆巍 , 等. 压力性损伤临床决策支持系统的研发与应用[J]. 中华护理杂志, 2020,55(1):50-54. |
| Xia DY, Shi TQ, Lu W , et al. Development and application of clinical decision support system for pressure injury[J]. Chin J Nurs, 2020,55(1):50-54. | |
| [12] | Agarwal R, Gao GD, Roches CD , et al. Research commentary:the digital transformation of healthcare:current status and the road ahead[J]. Inform Syst Res, 2010,21(4):796-809. |
| [13] | Ward MJ, Marsolo KA, Froehle CM . Applications of business analytics in healthcare[J]. Bus Horiz, 2014,57(5):571-582. |
| [14] | Wang YC, Hajli N . Exploring the path to big data analytics success in healthcare[J]. J Bus Res, 2017,70:287-299. |
| [15] | Jiang P, Winkley J, Zhao C , et al. An intelligent information forwarder for healthcare big data systems with distributed wearable sensors[J]. Ieee Syst J, 2016,10(3):1147-1159. |
| [16] | Srinivasan U, Arunasalam B . Leveraging big data analytics to reduce healthcare costs[J]. It Prof, 2013,15(6):21-28. |
| [17] | Pramanik I, Lau RYK, Azad AK , et al. Healthcare informatics and analytics in big data[J]. Expert Syst Appl, 2020,152(15):113-388. |
| [18] | Goodwin TR, Dina DF . A customizable deep learning model for nosocomial risk prediction from critical care notes with indirect supervision[J]. J Am Med Inform Assn, 2020,27(4):567-576. |
| [19] | Zahia S, Garcia Zapirain MB, Sevillano X , et al. Pressure injury image analysis with machine learning techniques:a systematic review on previous and possible future methods[J]. Artif Intell Med, 2020,102:101742. |
| [20] | Raju D, Su X, Patrician PA , et al. Exploring factors associated with pressure ulcers:a data mining approach[J]. Int J Nurs Stud, 2014,52(1):102-111. |
| [21] | Munoz N, Posthauer ME, Cereda E , et al. The role of nutrition for pressure injury prevention and healing:the 2019 international clinical practice guideline recommendations[J]. Adv Skin Wound Care, 2020,33(3):123-136. |
| [22] | Ortiz OP, Sierra-Sosa D, Zapirain BG . Pressure ulcer image segmentation technique through synthetic frequencies generation and contrast variation using toroidal geometry[J]. Bio Med Central, 2017,16(1):4. |
| [23] | Delode J, Rosow E, Roth C , et al. A wound-healing monitoring system[J]. IRBM, 2001,22(1):49-52. |
| [24] | Bochko V, Valisuo P, Harju T , et al. Lower extremity ulcer image segmentation of visual and near infrared imagery[J]. Skin Res Technol, 2010,16(2):190-197. |
| [25] | Veredas FJ, Mesa H, Morente L . Efficient detection of wound-bed and peripheral skin with statistical colour models[J]. Med Biol Eng Comput, 2015,53(4):345-359. |
| [26] | Wang CH, Yan XC, Smith M, et al. A unified framework for automatic wound segmentation and analysis with deep convolutional neural networks [C]. Milan:Conf Proc Ieee Eng Med Biol Soc, 2015: 2415-2418. |
| [27] | Zahia S, Sierra-Sosa D, Garcia-Zapirain B , et al. Tissue classification and segmentation of pressure injuries using convolutional neural networks[J]. Comput Meth Prog Bio, 2018,159:51-58. |
| [28] | Garcia-Zapirain B, Sierra-Sosa D, Ortiz D , et al. Efficient use of mobile devices for quantification of pressure injury images[J]. Technol Health Care, 2018,26(S1):269-280. |
| [29] | Kosmopoulos DI, Tzevelekou FL . Automated pressure ulcer lesion diagnosis for telemedicine systems[J]. Ieee Eng Med Biol, 2007,26(5):18-22. |
| [30] | Wannous H, Lucas Y, Treuillet S . Enhanced assessment of the wound-healing process by accurate multiview tissue classification[J]. Ieee T Med Imaging, 2011,30(2):315-326. |
| [31] | Veredas FJ, Luque-Baena RM, Martin-Santos FJ , et al. Wound image evaluation with machine learning[J]. Neurocomputing, 2015,164:112-122. |
| [32] | Kawahara J, Hamarneh G. Multi-resolution-tract CNN with hybrid pretrained and skin-lesion trained layers [C]. Springer:Intervention Workshop on Machine Learning in Medical Imaging, 2016: 164-171. |
| [33] | Litjens G, Kooi T, Bejnordi BE , et al. A survey on deep learning in medical image analysis[J]. Med Image Anal, 2017,42(9):60-88. |
| [34] | Shin HC, Roth HR, Gao M , et al. Deep convolutional neural networks for computer-aided detection:CNN,architectures,dataset characteristics and transfer learning[J]. Ieee T Med Imaging, 2016,35(5):1285-1298. |
| [35] | Demyanov S, Chakravorty R, Abedini M, et al. Classification of dermoscopy patterns using deep convolutional neural networks [C]//2016 IEEE 13th International Symposium on Biomedical Imaging(ISBI 2016). IEEE, 2016. |
| [36] | Goldstein BA, Navar AM, Pencina MJ , et al. Opportunities and challenges in developing risk prediction models with electronic health records data:a systematic review[J]. J Am Med Inform Assoc, 2017,24(1):198-208. |
| [37] | Wilson PW, D'Agostino RB, Levy D,et al. Prediction of coronary heart disease using risk factor categories[J]. Circulation, 1998,97(18):1837-1847. |
| [38] | Hersh WR, Weiner MG, Embi PJ , et al. Caveats for the use of operational electronic health record data in comparative effectiveness research[J]. Med Care, 2013,51(8):30-37. |
| [39] | Raju D, Su X, Patrician PA , et al. Exploring factors associated with pressure ulcers:a data mining approach[J]. Int J Nurs Stud, 2015,52(1):102-111. |
| [40] | Alderden J, Pepper GA, Wilson A , et al. Predicting pressure injury in critical care patients:a machine-learning model[J]. Am J Crit Care, 2018,27(6):461-468. |
| [41] | Setoguchi Y, Ghaibeh AA, Mitani K , et al. Predictability of pressure ulcers based on operation duration,transfer activity,and body mass index through the use of an alternating decision tree[J]. J Med Invest, 2016,63(3):248-255. |
| [42] | 宋杰 . 基于大数据技术的皮肤损伤护理不良事件预测模型的构建和平台研发[D]. 北京:中国人民解放军医学院, 2018. |
| Song J . Predictive model construction and software development of skin damage care adverse events with big data technology[D]. Beijing:Medical School of Chinese PLA, 2018. | |
| [43] | Goodwin TR, Demner-Fushman D . A customizable deep learning model for nosocomial risk prediction from critical care notes with indirect supervision[J]. J Am Med Inform Assoc, 2020,27(4):567-576. |
| [1] | HUANG Panpan, LI Liling, HU Xiaojing. Research progress of early exercise rehabilitation in infants with congenital heart disease [J]. Chinese Journal of Nursing, 2025, 60(9): 1050-1055. |
| [2] | CHEN Liou, ZHANG Wenting, LIU Junqi, WANG Yuncong, WANG Zhenlin, QI Sai, YANG Na. Study on the effect of pulmonary lobes surface projection localization combined with pulmonary segment drainage and sputum expectoration technique on airway clearance in patients with aspiration pneumonia [J]. Chinese Journal of Nursing, 2025, 60(9): 1056-1061. |
| [3] | YANG Nana, CHENG Chuanli, ZENG Hui, FU Dandan, WANG Yan, CHEN Yue, RAN Hongmin, FAN Hongjing, LONG Xia. Evaluation of the effect of graded exercise rehabilitation on patients with acute exacerbation of chronic obstructive pulmonary disease [J]. Chinese Journal of Nursing, 2025, 60(9): 1062-1067. |
| [4] | CAO Yun, SUN Guozhen, CHEN Feng, JI Xueli, YAN Mengwan, JING Lei, QIAN Kun. A study of modified ankle pump exercise in stroke patients [J]. Chinese Journal of Nursing, 2025, 60(9): 1068-1074. |
| [5] | XIE Min, QI Wenkai, YIN Ling, ZHANG Xuan, ZHAO Ruqin. Potential profile analysis and influencing factors of kinesiophobia in patients with peritoneal dialysis [J]. Chinese Journal of Nursing, 2025, 60(9): 1080-1086. |
| [6] | CHEN Bingqian, ZHAO Bin, SUN Jiarong, HAO Sifang, HOU Xiaoli. Oral health management dilemmas of chronic periodontitis patients with implant dentures:a qualitative study [J]. Chinese Journal of Nursing, 2025, 60(9): 1087-1092. |
| [7] | QIN Chunlan, WU Zhenyun, QIAN Hongying, ZHAO Qian, SUN Jinting. Experiences of disease self-control among patients with chronic obstructive pulmonary disease:a qualitative study [J]. Chinese Journal of Nursing, 2025, 60(9): 1093-1098. |
| [8] | LI Ziwei, FENG Lijuan, CHEN Xusheng, HUANG Yi, YANG Jie. Development and application of a Fear of Movement Assessment Scale for patients with peripherally inserted central catheters [J]. Chinese Journal of Nursing, 2025, 60(9): 1099-1106. |
| [9] | CHENG Zhiqiang, ZHANG Baozhen, TANG Liping, LI Jing, XIA Jiaoyun, WEI Xueyan, GONG Zhixian, ZHANG Meizhen, LI Lusi. Reliability and validity test of the Chinese version of the Urinary Incontinence Awareness and Attitude Scale [J]. Chinese Journal of Nursing, 2025, 60(9): 1107-1112. |
| [10] | SHI Meiqin, WU Jianfang, ZHANG Duo, WU Chunping, CHEN Ling, TAO Lei. Nursing care for postoperative laryngeal function rehabilitation in a patient undergoing primary voice prosthesis implantation after total laryngectomy [J]. Chinese Journal of Nursing, 2025, 60(9): 1120-1123. |
| [11] | GU Qian, HUANG Xi, SHI Weixiong, WU Jing, TAN Ruoming, WANG Feng. Nursing care for a patient with cytokine release syndrome following T-cell immunotherapy [J]. Chinese Journal of Nursing, 2025, 60(9): 1124-1127. |
| [12] | ZHOU Miao, CHEN Xing, PENG Fei, SUN Shangxue, LI Yangyang. Systematic review of risk prediction instruments for central line associated bloodstream infections in ICU patients [J]. Chinese Journal of Nursing, 2025, 60(9): 1132-1139. |
| [13] | PENG Yingjie, LIU Aihong, ZHU Wenli, MEI Yuxin, ZHOU Meng, GUAN Wenjing. Systematic review of readiness assessment tools for advance care planning in older adults [J]. Chinese Journal of Nursing, 2025, 60(9): 1146-1153. |
| [14] | RAN Lingxiao, WANG Dongmin, XU Ke, WANG Cong, CAO Hua, CUN Wei, JIANG Yan. Application of biomechanical simulation based on three-dimensional human body model in preventing pressure ulcers:a scoping review [J]. Chinese Journal of Nursing, 2025, 60(8): 1012-1018. |
| [15] | JIN Yujia, JIANG Hu, WANG Xiaoxuan, YI Jingna, MEI Yongxia, GUO Zhiting, ZHANG Zhenxiang, LIN Beilei. Application of information-based risk communication in primary prevention of cardiovascular diseases:a scoping review [J]. Chinese Journal of Nursing, 2025, 60(8): 1019-1025. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||