中华护理杂志 ›› 2022, Vol. 57 ›› Issue (13): 1655-1659.DOI: 10.3761/j.issn.0254-1769.2022.13.019
收稿日期:
2021-11-19
出版日期:
2022-07-10
发布日期:
2022-06-29
通讯作者:
庄一渝,E-mail: zhuangyy@zju.edu.cn作者简介:
董婧:女,本科(博士在读),E-mail: dongj1999@zju.edu.cn
基金资助:
Received:
2021-11-19
Online:
2022-07-10
Published:
2022-06-29
摘要:
环境智能是一项强调环境与人智能交互的新兴技术,为护理领域的新型智能化发展提供可能。该文介绍了环境智能的概念、发展背景及其在护理领域的应用现状,包括病情预警、决策支持、个性化病房管理、缓释压力、家居生活辅助、预防老年虐待等,总结发展前景,并分析其在技术、伦理、资金困境以及设备依赖等方面面临的挑战,为环境智能在国内护理领域中的应用提供参考。
董婧, 庄一渝. 环境智能在护理领域中的应用进展[J]. 中华护理杂志, 2022, 57(13): 1655-1659.
DONG Jing, ZHUANG Yiyu. Progress on the application of ambient intelligence in the field of nursing[J]. Chinese Journal of Nursing, 2022, 57(13): 1655-1659.
[1] | Gams M, Gu I, Härmä A, et al. Artificial intelligence and ambient intelligence[J]. J Ambient Intell Smart Environ, 2019, 11(1):71-86. |
[2] |
Hristoskova A, Sakkalis V, Zacharioudakis G, et al. Ontology-driven monitoring of patient’s vital signs enabling personalized medical detection and alert[J]. Sensors (Basel), 2014, 14(1):1598-1628.
DOI URL |
[3] |
Yeung S, Downing NL, Li FF, et al. Bedside computer vision- moving artificial intelligence from driver assistance to patient safety[J]. N Engl J Med, 2018, 378(14):1271-1273.
DOI URL |
[4] | Haque A, Guo M, Alahi A, et al. Towards vision-based smart hospitals:a system for tracking and monitoring hand hygiene compliance[EB/OL].[2021-11-19]. https://ar-xiv.org/abs/1708.00163 . |
[5] | Martinez-Martin N, Luo ZL, Kaushal A, et al. Ethical issues in using ambient intelligence in health-care settings[J]. Lancet Di-git Health, 2021, 3(2):e115-e123. |
[6] |
Chen MS, Wu KC, Tsai YL, et al. Data analysis of ambient intelligence in a healthcare simulation system:a pilot study in high-end health screening process improvement[J]. BMC Health Serv Res, 2021, 21(1):936.
DOI URL |
[7] | Aarts E. Ambient intelligence:a multimedia perspective[J]. IEEE Multimed, 2004, 11(1):12-19. |
[8] | Riva G, Vatalaro F, Davide F, et al. Ambient intelligence:the evolution of technology,communication and cognition towards the future of human-computer interaction[M]. Amsterdam: IOS Press, 2005, 3:35-43. |
[9] | da Rosa Tavares JE, Victória Barbosa JL. Ubiquitous healthcare on smart environments:a systematic mapping study[J]. J Ambient Intell Smart Environ, 2020, 12(6):513-529. |
[10] |
Ongenae F, Famaey J, Verstichel S, et al. Ambient-aware continuous care through semantic context dissemination[J]. BMC Med Inform Decis Mak, 2014, 14:97.
DOI URL |
[11] |
Gerke S, Yeung S, Cohen IG. Ethical and legal aspects of ambient intelligence in hospitals[J]. JAMA, 2020, 323(7):601-602.
DOI PMID |
[12] |
Yeung S, Rinaldo F, Jopling J, et al. A computer vision system for deep learning-based detection of patient mobilization activities in the ICU[J]. NPJ Digit Med, 2019, 2:11.
DOI URL |
[13] |
Haque A, Milstein A, Li FF. Illuminating the dark spaces of healthcare with ambient intelligence[J]. Nature, 2020, 585(7824):193-202.
DOI URL |
[14] | Reiter A, Ma A, Rawat N, et al. Process monitoring in the intensive care unit:assessing patient mobility through activity analysis with a non-invasive mobility sensor[J]. Med Image Com-put Comput Assist Interv, 2016, 9900:482-490. |
[15] |
Davoudi A, Malhotra KR, Shickel B, et al. Intelligent ICU for autonomous patient monitoring using pervasive sensing and deep learning[J]. Sci Rep, 2019, 9(1):8020.
DOI PMID |
[16] | Roux M. How facial recognition is used in healthcare[EB/OL].(2019-03-23)[2021-11-03]. https://sightcorp.com/blog/how-facial-recognition-is-used-in-healthcare/ . |
[17] | Marins F, Cardoso L, Esteves M, et al. An agent-based RFID monitoring system for healthcare[M]. Cham: Springer Internatio-nal Publishing, 2017:407-416. |
[18] | Rodrigues R, Gonçalves P, Miranda M, et al. Monitoring intelligent system for the Intensive Care Unit using RFID and multi-agent systems[C]// 2012 IEEE International Conference on Industrial Engineering and Engineering Management. Hong Kong: IEEE, 2012:851-855. |
[19] | Ganesan B, Gowda T, Al-Jumaily A, et al. Ambient assisted liv-ing technologies for older adults with cognitive and physical impairments:a review[J]. Eur Rev Med Pharmacol Sci, 2019, 23(23):10470-10481. |
[20] | Antón Má, Ordieres-Meré J, Saralegui U, et al. Non-invasive am-bient intelligence in real life:dealing with noisy patterns to help older people[J]. Sensors(Basel), 2019, 19(14):E3113. |
[21] | Bevilacqua R, Ceccacci S, Germani M, et al. Smart object for AAL:a review[M]. Cham: Springer International Publishing, 2014:313-324. |
[22] |
Lussier M, Aboujaoudé A, Couture M, et al. Using ambient assisted living to monitor older adults with alzheimer disease:single-case study to validate the monitoring report[J]. JMIR Med Inform, 2020, 8(11):e20215.
DOI URL |
[23] | 胡晓昭, 孙一勤, 马红丽, 等. 人工智能赋能护理进展及发展策略[J]. 中华现代护理杂志, 2021, 27(6):701-707. |
Hu XZ, Sun YQ, Ma HL, et al. Progress and development stra-tegy of artificial intelligence enabled nursing[J]. Chin J Mod Nurs, 2021, 27(6):701-707. | |
[24] | 刘晓娜, 潘红英. 护理决策支持系统的应用进展[J]. 中华护理杂志, 2018, 53(6):735-739. |
Liu XN, Pan HY. Progress on application of nursing decision support system[J]. Chin J Nurs, 2018, 53(6):735-739. | |
[25] | Portela F, Santos MF, Machado J, et al. Pervasive and intelligent decision support in critical health care using ensembles[M]. Heidelberg: Springer Berlin Heidelberg, 2013:1-16. |
[26] |
Lussier M, Couture M, Moreau M, et al. Integrating an ambient assisted living monitoring system into clinical decision-making in home care:an embedded case study[J]. Gerontechnology, 2020, 19(1):77-92.
DOI URL |
[27] |
Bajo J, de Paz JF, de Paz Y, et al. Integrating case-based plan-ning and RPTW neural networks to construct an intelligent environment for health care[J]. Expert Syst Appl, 2009, 36(3):5844-5858.
DOI URL |
[28] |
Ma AJ, Rawat N, Reiter A, et al. Measuring patient mobility in the ICU using a novel noninvasive sensor[J]. Crit Care Med, 2017, 45(4):630-636.
DOI URL |
[29] |
Cavallo F, Aquilano M, Arvati M. An ambient assisted living approach in designing domiciliary services combined with innovative technologies for patients with Alzheimer’s disease:a case study[J]. Am J Alzheimers Dis Other Demen, 2015, 30(1):69-77.
DOI URL |
[30] | Singh D, Kropf J, Hanke S, et al. Ambient assisted living technologies from the perspectives of older people and professionals[M]. Cham: Springer International Publishing, 2017:255-266. |
[31] |
Ferrara M, Langiano E, di Brango T, et al. Prevalence of stress,anxiety and depression in with Alzheimer caregivers[J]. Health Qual Life Outcomes, 2008, 6:93.
DOI URL |
[32] | Núñez-Naveira L, Alonso-Búa B, de Labra C, et al. Underst-AID,an ICT platform to help informal caregivers of people with dementia:a pilot randomized controlled study[J]. Biomed Res Int, 2016, 2016:5726465. |
[33] | Bleda AL, Maestre R, Beteta MA, et al. AmICare:ambient intelligent and assistive system for caregivers support[C]// 2018 IEEE 16th International Conference on Embedded and Ubiquitous Computing. Bucharest:IEEE, 2018:66-73. |
[34] | Bouchard K, Bouchard B, Bouzouane A. Guidelines to efficient smart home design for rapid AI prototyping: a case study[C]// PETRA ’12:proceedings of the 5th international conference on pervasive technologies related to assistive environments. 2012:1-8. |
[35] | Rantz MJ, Skubic M, Koopman RJ, et al. Using sensor networks to detect urinary tract infections in older adults[C]// 2011 IEEE 13th international conference on e-Health networking,applications and services. Columbia:IEEE, 2011:142-149. |
[36] | Andreadis S, Stavropoulos TG, Meditskos G, et al. Dem@Home:ambient intelligence for clinical support of people living with dementia[M]. Cham: Springer International Publishing, 2016:357-368. |
[37] | Huang JJ, Yu SI, Syu HY. Development of the smart toilet equi-pment with measurements of physiological parameters[C]// 2012 9th international conference on ubiquitous intelligence and computing and 9th international conference on autonomic and trusted computing. Fukuoka:IEEE, 2012:9-16. |
[38] | Huang MC, Xu WY, Liu J, et al. Inconspicuous on-bed respiratory rate monitoring[C]// PETRA ’13:proceedings of the 6th international conference on pervasive technologies related to assistive environments. 2013:1-8. |
[39] |
Trento M, Franceschini M, Fornengo P, et al. Ambient intellige-nce for long-term diabetes care(AmILCare). Qualitative analysis of patients’ expectations and attitudes toward interactive technology[J]. Endocrine, 2021, 73(2):472-475.
DOI URL |
[40] | Yon Y, Mikton CR, Gassoumis ZD, et al. Elder abuse prevalence in community settings:a systematic review and meta-analysis[J]. Lancet Glob Health, 2017, 5(2):e147-e156. |
[41] | Huk M. Using context-aware environment for elderly abuse prevention[M]. Berlin: Springer Berlin Heidelberg, 2016:567-574. |
[42] |
Verceles AC, Hager ER. Use of accelerometry to monitor phy-sical activity in critically ill subjects:a systematic review[J]. Respir Care, 2015, 60(9):1330-1336.
DOI PMID |
[43] |
Uddin MZ, Khaksar W, Torresen J. Ambient sensors for elderly care and independent living:a survey[J]. Sensors (Basel), 2018, 18(7):E2027.
DOI URL |
[44] | 王攀峰, 胡佳慧, 张洪君, 等. 结构化护理风险评估与记录系统的构建与应用[J]. 中华护理杂志, 2018, 53(6):717-719. |
Wang PF, Hu JH, Zhang HJ, et al. Construction and application of the structured nursing risk assessment and recording system[J]. Chin J Nurs, 2018, 53(6):717-719. | |
[45] |
de Prisco R, Guarino A, Lettieri N, et al. Providing music service in Ambient intelligence:experiments with gym users[J]. Expert Syst Appl, 2021, 177:114951.
DOI URL |
[46] | Kang W, Shin D, Shin D,. Detecting and predicting of abnormal behavior using hierarchical Markov model in smart home network[C]// 2010 IEEE 17th international conference on industrial engineering and engineering management. Xiamen:IEEE, 2010:410-414. |
[47] |
刘裕文, 李庆印. 数字技术在心脏康复患者中的应用进展[J]. 中华护理杂志, 2020, 55(11):1728-1732.
DOI |
Liu YW, Li QY. Application progress of digital technology in patients with cardiac rehabilitation[J]. Chin J Nurs, 2020, 55(11):1728-1732. | |
[48] | 何瑛, 李伦. 机器人在护理领域中的应用进展[J]. 中华护理杂志, 2018, 53(9):1140-1143. |
He Y, Li L. Research progress on application of robots in nursing[J]. Chin J Nurs, 2018, 53(9):1140-1143. |
[1] | 刘梦媛, 田凌云, 蒋敬, 冯心语, 李卫娟, 罗慧, 李映兰. 护士在跨专业合作中伦理冲突的范围综述[J]. 中华护理杂志, 2024, 59(9): 1138-1144. |
[2] | 崔怡爽, 何细飞, 王昭昭, 程捷, 杨伟梅, 陆丽娟. 共享决策在急性冠脉综合征患者中应用的范围综述[J]. 中华护理杂志, 2024, 59(9): 1145-1152. |
[3] | 张小艳, 李学靖, 杨丹, 孟美琪, 郝玉芳. 老年人久坐行为干预策略的范围综述[J]. 中华护理杂志, 2024, 59(8): 1012-1020. |
[4] | 余良梦, 俞小玲, 李佳镁, 阮晓芬. 证据图谱在护理学领域的应用进展[J]. 中华护理杂志, 2024, 59(8): 1021-1025. |
[5] | 房钰, 郝媛媛, 张晨, 董莹, 吴赢鑫, 姜桂春. 癌症患者决策疲劳的研究进展及护理启示[J]. 中华护理杂志, 2024, 59(8): 941-946. |
[6] | 宋晓安, 卢兴泉, 马静, 王亚凡, 王晓华, 任红, 高俊. 新入职护士考核评估管理信息系统的开发与应用[J]. 中华护理杂志, 2024, 59(8): 974-979. |
[7] | 霍晓鹏, 张红梅, 赖小星, 郑丹萍, 叶雅雯, 张馨月, 赵亚芳, 吴欣娟. 专科护士多层次复合型管理方案的构建与实践[J]. 中华护理杂志, 2024, 59(7): 842-847. |
[8] | 段思雨, 侯铭, 丁敏, 孙瑶, 李萍. 低年资护士工作成长现状及影响因素分析[J]. 中华护理杂志, 2024, 59(7): 848-853. |
[9] | 叶磊, 夏广惠, 陈方梅, 田宇燕, 祁玮. 虚拟现实技术在癌症相关认知障碍患者中应用的范围综述[J]. 中华护理杂志, 2024, 59(7): 882-889. |
[10] | 熊桃, 谭雪梅, 罗静, 李阳, 郑予希, 李奉玲, 魏雪梅, 崔丽君, 罗澜峻. 脑卒中患者康复动机评估工具的研究进展[J]. 中华护理杂志, 2024, 59(7): 890-896. |
[11] | 颜钰, 龚姝, 段棣飞, 马登艳. 知识图谱在慢性病患者饮食管理中的应用进展[J]. 中华护理杂志, 2024, 59(6): 753-757. |
[12] | 邓艺帆, 王建宁, 彭梦婷, 洪杜. 决策辅助工具在失智症患者照护中应用的范围综述[J]. 中华护理杂志, 2024, 59(6): 758-763. |
[13] | 张淼淼, 张丽, 闫荣, 丁敏, 孟祥敏, 徐萍. 网络哀伤辅导在安宁疗护中的应用进展[J]. 中华护理杂志, 2024, 59(5): 556-561. |
[14] | 盛智琼, 闫星宇, 刘钰文, 李书寰, 丁燕洁, 陈珊珊, 叶铭惠, 孙彩霞. 护士业余时间规划现状及影响因素研究[J]. 中华护理杂志, 2024, 59(5): 588-593. |
[15] | 徐榕璟, 贺旭妍, 贾守梅. 骨科老年患者术后运动恐惧的范围综述[J]. 中华护理杂志, 2024, 59(5): 626-633. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||