中华护理杂志 ›› 2024, Vol. 59 ›› Issue (3): 378-384.DOI: 10.3761/j.issn.0254-1769.2024.03.018
• 综述 • 上一篇
收稿日期:
2023-03-24
出版日期:
2024-02-10
发布日期:
2024-02-02
通讯作者:
宋剑平,E-mail:zrxwk1@zju.edu.cn作者简介:
胡欢婷:女,本科(硕士在读),E-mail:2435722830@qq.com
基金资助:
HU Huanting(), HONG Sisi, JIA Yingying, SONG Jianping()
Received:
2023-03-24
Online:
2024-02-10
Published:
2024-02-02
摘要:
随着医药卫生体制改革的深化以及就医秩序的持续优化,组织制订入出院标准,完善患者出院准备服务尤为重要。近年来,机器学习技术在医学领域的研究及应用不断深入,在处理数据及风险预测研究等方面具有独特优势。该研究从机器学习的发展进程、类型、在患者出院准备服务中的应用内容及效果、目前面临的问题等方面进行综述,以期为医护人员实施最佳临床决策提供参考,进一步完善患者出院准备服务模式。
胡欢婷, 洪思思, 贾盈盈, 宋剑平. 机器学习在患者出院准备服务中的应用进展[J]. 中华护理杂志, 2024, 59(3): 378-384.
HU Huanting, HONG Sisi, JIA Yingying, SONG Jianping. Research progress on application of machine learning in discharge preparation service for patients[J]. Chinese Journal of Nursing, 2024, 59(3): 378-384.
[1] | 陈冰, 刘秀文, 仲冬梅. 出院准备服务在癌症病人中的应用研究进展[J]. 护理研究, 2021, 35(23):4226-4229. |
Chen B, Liu XW, Zhong DM. Research progress on the app-lication of hospital discharge preparation service in cancer patients[J]. Chin Nurs Res, 2021, 35(23):4226-4229. | |
[2] | 国务院办公厅. 国务院办公厅关于印发深化医药卫生体制改革2022年重点工作任务的通知[EB/OL].(2022-05-04)[2022-12-12]. http://www.gov.cn/zhengce/content/2022-05/25/content_5692209.htm |
General Office of the State Council. The General Office of the State Council issued a notice on the key tasks for deepening the reform of the medical and health system in 2022[EB/OL]. (2022-05-04)[2022-12-12]. http://www.gov.cn/zhengce/content/2022-05/25/content_5692209.htm | |
[3] |
张晓娜, 李鑫丹, 芦鸿雁, 等. 出院准备服务对慢性阻塞性肺疾病患者干预效果的Meta分析[J]. 中华护理杂志, 2022, 57(1):42-48.
DOI |
Zhang XN, Li XD, Lu HY, et al. Intervention effects of dis-charge preparation service on patients with chronic obstructive pulmonary diseases:a meta-analysis[J]. Chin J Nurs, 2022, 57(1):42-48. | |
[4] |
孙超, 奚桓, 李峥, 等. 老年患者出院准备服务专家共识(2019版)[J]. 中华护理杂志, 2020, 55(2):220-227.
DOI |
Sun C, Xi H, Li Z, et al. Expert consensus on the discharge planning for hospitalized elderly patients(version 2019)[J]. Chin J Nurs, 2020, 55(2):220-227. | |
[5] |
乐霄, 汪晖, 王颖, 等. 出院计划实施质量评价指标的范围综述[J]. 中华护理杂志, 2021, 56(4):611-618.
DOI |
Yue X, Wang H, Wang Y, et al. Review on the scope of qua-lity evaluation indicators of discharge plan implementation[J]. Chin J Nurs, 2021, 56(4):611-618. | |
[6] | 国务院办公厅. 国务院办公厅关于促进和规范健康医疗大数据应用发展的指导意见[EB/OL].(2016-06-24)[2023-02-28]. http://www.gov.cn/zhengce/content/2016-06/24/content_5085091.htm. |
General Office of the State Council. Guiding opinions of the General Office of the State Council on promoting and standardizing the application and development of big data in health care[EB/OL].(2016-06-24)[2023-02-28]. http://www.gov.cn/zhengce/content/2016-06/24/content_5085091.htm. | |
[7] |
Handelman GS, Kok HK, Chandra RV, et al. eDoctor:machine learning and the future of medicine[J]. J Intern Med, 2018, 284(6):603-619.
DOI PMID |
[8] |
Levin S, Toerper M, Hamrock E, et al. Machine-learning-based electronic triage more accurately differentiates patients with respect to clinical outcomes compared with the emergency severity index[J]. Ann Emerg Med, 2018, 71(5):565-574.e2.
DOI URL |
[9] |
丁四清, 陆晶, 秦春香, 等. 数据挖掘在护理不良事件管理中的应用进展[J]. 中华护理杂志, 2019, 54(6):873-877.
DOI |
Ding SQ, Lu J, Qin CX, et al. Application progress on data mining for nursing adverse event management[J]. Chin J Nurs, 2019, 54(6):873-877. | |
[10] |
吕璐洋, 王华芬, 卢芳燕, 等. 住院患儿家庭出院准备度评估工具的研究进展[J]. 中华护理杂志, 2022, 57(4):507-512.
DOI |
Lu LY, Wang HF, Lu FY, et al. Research progress of family discharge readiness assessment tools for hospitalized children[J]. Chin J Nurs, 2022, 57(4):507-512. | |
[11] |
Causey-Upton R, Howell DM, Kitzman PH, et al. Factors influe-ncing discharge readiness after total knee replacement[J]. Orthop Nurs, 2019, 38(1):6-14.
DOI PMID |
[12] | Bishop JA, Javed HA, El-Bouri R, et al. Improving patient flow during infectious disease outbreaks using machine learning for real-time prediction of patient readiness for discharge[J]. PLoS One, 2021, 16(11):e0260476. |
[13] |
Zhang XM, Yan C, Malin BA, et al. Predicting next-day dis-charge via electronic health record access logs[J]. J Am Med Inform Assoc, 2021, 28(12):2670-2680.
DOI URL |
[14] |
Bacchi S, Gilbert T, Gluck S, et al. Daily estimates of indivi-dual discharge likelihood with deep learning natural language processing in general medicine:a prospective and external validation study[J]. Intern Emerg Med, 2022, 17(2):411-415.
DOI |
[15] |
Zhong HY, Poeran J, Gu A, et al. Machine learning approa-ches in predicting ambulatory same day discharge patients after total hip arthroplasty[J]. Reg Anesth Pain Med, 2021, 46(9):779-783.
DOI URL |
[16] |
Lajevardi-Khosh A, Jalali A, Rajput KS, et al. Novel dynamic prediction of daily patient discharge in acute and critical care[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2021, 2021:2347-2352.
DOI PMID |
[17] | Nemati M, Ansary J, Nemati N. Machine-learning approaches in COVID-19 survival analysis and discharge-time likelihood prediction using clinical data[J]. Patterns (NY), 2020, 1(5):100074. |
[18] | Ohbe H, Goto T, Nakamura K, et al. Development and valida-tion of early prediction models for new-onset functional impairment at hospital discharge of ICU admission[J]. Inten-sive Care Med, 2022, 48(6):679-689. |
[19] | Inoue Y, Imura T, Tanaka R, et al. Developing a clinical pre-diction rule for gait independence at discharge in patients with stroke:a decision-tree algorithm analysis[J]. J Stroke Cere-brovasc Dis, 2022, 31(6):106441. |
[20] | Betts KS, Kisely S, Alati R. Predicting neonatal respiratory dis-tress syndrome and hypoglycaemia prior to discharge:leve-raging health administrative data and machine learning[J]. J Biomed In-form, 2021, 114:103651. |
[21] | Zhao CC, Bjurlin MA, Wysock JS, et al. Machine learning deci-sion support model for radical cystectomy discharge planning[J]. Urol Oncol Semin Orig Investig, 2022, 40(10):453.e9-453.e18. |
[22] |
Veerbeek JM, Ottiger B, Cazzoli D, et al. Speed up discharge planning at the acute stroke unit:a development and external validation study for the early prediction of discharge home[J]. Front Neurol, 2022, 13:999595.
DOI URL |
[23] |
van de Sande D, van Genderen ME, Verhoef C, et al. Optimi-zing discharge after major surgery using an artificial intell-igence-based decision support tool(DESIRE):an external vali-dation study[J]. Surgery, 2022, 172(2):663-669.
DOI URL |
[24] |
Meng QC, Liu WT, Gao PR, et al. Novel deep learning tech-nique used in management and discharge of hospitalized patients with COVID-19 in China[J]. Ther Clin Risk Manag, 2020, 16:1195-1201.
DOI URL |
[25] | Safavi KC, Khaniyev T, Copenhaver M, et al. Development and validation of a machine learning model to aid discharge processes for inpatient surgical care[J]. JAMA Netw Open, 2019, 2(12):e1917221. |
[26] |
Satyadev N, Warman PI, Seas A, et al. Machine learning for predicting discharge disposition after traumatic brain injury[J]. Neurosurgery, 2022, 90(6):768-774.
DOI PMID |
[27] | Valliani AA, Kim NC, Martini ML, et al. Robust prediction of non-home discharge after thoracolumbar spine surgery with ensemble machine learning and validation on a nationwide cohort[J]. World Neurosurg, 2022, 165:e83-e91. |
[28] |
Imura T, Iwamoto Y, Inagawa T, et al. Decision tree algorithm identifies stroke patients likely discharge home after rehabilitation using functional and environmental predictors[J]. J Stroke Cerebrovasc Dis, 2021, 30(4):105636.
DOI URL |
[29] | de Berker H, de Berker A, Aung H, et al. Pre-stroke disability and stroke severity as predictors of discharge destination from an acute stroke ward[J]. Clin Med(Lond), 2021, 21(2):e186-e191. |
[30] |
Mickle CF, Deb D. Early prediction of patient discharge dis-position in acute neurological care using machine learning[J]. BMC Health Serv Res, 2022, 22(1):1-17.
DOI |
[31] | Muhlestein WE, Monsour MA, Friedman GN, et al. Predicting discharge disposition following meningioma resection using a multi-institutional natural language processing model[J]. Neu-rosurgery, 2021, 88(4):838-845. |
[32] | Komagamine J, Kobayashi M. Prevalence of hospitalisation cau-sed by adverse drug reactions at an internal medicine ward of a single centre in Japan:a cross-sectional study[J]. BMJ Open, 2019, 9(8):e030515. |
[33] |
Tan HX, Teo CHD, Ang PS, et al. Combining machine learning with a rule-based algorithm to detect and identify related entities of documented adverse drug reactions on hospital discharge summaries[J]. Drug Saf, 2022, 45(8):853-862.
DOI |
[34] |
Knipe D, Metcalfe C, Hawton K, et al. Risk of suicide and repeat self-harm after hospital attendance for non-fatal self-harm in Sri Lanka:a cohort study[J]. Lancet Psychiatry, 2019, 6(8):659-666.
DOI URL |
[35] |
Hawton K, Witt KG, Salisbury TLT, et al. Psychosocial inter-ventions following self-harm in adults:a systematic review and meta-analysis[J]. Lancet Psychiatry, 2016, 3(8):740-750.
DOI PMID |
[36] |
Xu Z, Zhang Q, Yi PP. Predicting post-discharge self-harm in-cidents using disease comorbidity networks:a retrospective machine learning study[J]. J Affect Disord, 2020, 277:402-409.
DOI URL |
[37] |
Zelkowitz RL, Jiang T, Horváth-Puhó E, et al. Predictors of nonfatal suicide attempts within 30 days of discharge from psychiatric hospitalization:sex-specific models developed using population-based registries[J]. J Affect Disord, 2022, 306:260-268.
DOI URL |
[38] | Shi K, Ho V, Song JJ, et al. Predicting unplanned 7-day inten-sive care unit readmissions with machine learning models for improved discharge risk assessment[J]. AMIA Jt Summits Tran-sl Sci Proc, 2022, 2022:446-455. |
[39] |
Chen LL, Chen SP. Prediction of readmission in patients with acute exacerbation of chronic obstructive pulmonary disease within one year after treatment and discharge[J]. BMC Pulm Med, 2021, 21(1):1-17.
DOI |
[40] |
Howard EP, Morris JN, Schachter E, et al. Machine-learning mo-deling to predict hospital readmission following discharge to post-acute care[J]. J Am Med Dir Assoc, 2021, 22(5):1067-1072.e29.
DOI URL |
[41] | Symum H, Zayas-Castro J. Identifying children at readmission risk:at-admission versus traditional at-discharge readmission prediction model[J]. Healthcare (Basel), 2021, 9(10):1334. |
[42] |
Zhou HQ, Albrecht MA, Roberts PA, et al. Using machine lear-ning to predict paediatric 30-day unplanned hospital read-missions:a case-control retrospective analysis of medical re-cords,including written discharge documentation[J]. Aust Health Rev, 2021, 45(3):328-337.
DOI URL |
[43] |
Stonko DP, Betzold RD, Abdou H, et al. In-hospital outcomes in autogenous vein versus synthetic graft interposition for traumatic arterial injury:a propensity-matched cohort from PROOVIT[J]. J Trauma Acute Care Surg, 2022, 92(2):407-412.
DOI URL |
[44] |
Wang HM, Tang JX, Wu MY, et al. Application of machine learning missing data imputation techniques in clinical decision making:taking the discharge assessment of patients with spontaneous supratentorial intracerebral hemorrhage as an example[J]. BMC Med Inform Decis Mak, 2022, 22(1):13.
DOI |
[45] |
Mahajan SM, Heidenreich P, Abbott B, et al. Predictive models for identifying risk of readmission after index hospitalization for heart failure:a systematic review[J]. Eur J Cardiovasc Nurs, 2018, 17(8):675-689.
DOI URL |
[1] | 刘梦媛, 田凌云, 蒋敬, 冯心语, 李卫娟, 罗慧, 李映兰. 护士在跨专业合作中伦理冲突的范围综述[J]. 中华护理杂志, 2024, 59(9): 1138-1144. |
[2] | 崔怡爽, 何细飞, 王昭昭, 程捷, 杨伟梅, 陆丽娟. 共享决策在急性冠脉综合征患者中应用的范围综述[J]. 中华护理杂志, 2024, 59(9): 1145-1152. |
[3] | 张小艳, 李学靖, 杨丹, 孟美琪, 郝玉芳. 老年人久坐行为干预策略的范围综述[J]. 中华护理杂志, 2024, 59(8): 1012-1020. |
[4] | 余良梦, 俞小玲, 李佳镁, 阮晓芬. 证据图谱在护理学领域的应用进展[J]. 中华护理杂志, 2024, 59(8): 1021-1025. |
[5] | 房钰, 郝媛媛, 张晨, 董莹, 吴赢鑫, 姜桂春. 癌症患者决策疲劳的研究进展及护理启示[J]. 中华护理杂志, 2024, 59(8): 941-946. |
[6] | 叶磊, 夏广惠, 陈方梅, 田宇燕, 祁玮. 虚拟现实技术在癌症相关认知障碍患者中应用的范围综述[J]. 中华护理杂志, 2024, 59(7): 882-889. |
[7] | 熊桃, 谭雪梅, 罗静, 李阳, 郑予希, 李奉玲, 魏雪梅, 崔丽君, 罗澜峻. 脑卒中患者康复动机评估工具的研究进展[J]. 中华护理杂志, 2024, 59(7): 890-896. |
[8] | 颜钰, 龚姝, 段棣飞, 马登艳. 知识图谱在慢性病患者饮食管理中的应用进展[J]. 中华护理杂志, 2024, 59(6): 753-757. |
[9] | 邓艺帆, 王建宁, 彭梦婷, 洪杜. 决策辅助工具在失智症患者照护中应用的范围综述[J]. 中华护理杂志, 2024, 59(6): 758-763. |
[10] | 张淼淼, 张丽, 闫荣, 丁敏, 孟祥敏, 徐萍. 网络哀伤辅导在安宁疗护中的应用进展[J]. 中华护理杂志, 2024, 59(5): 556-561. |
[11] | 徐榕璟, 贺旭妍, 贾守梅. 骨科老年患者术后运动恐惧的范围综述[J]. 中华护理杂志, 2024, 59(5): 626-633. |
[12] | 王思琦, 范玲. 护士出勤主义行为的研究进展[J]. 中华护理杂志, 2024, 59(5): 634-640. |
[13] | 王晴, 黄晓婷, 唐四元, 黄重梅. 即时适配干预在护理领域中的应用进展[J]. 中华护理杂志, 2024, 59(4): 490-495. |
[14] | 周王青, 刘言, 刘力硕, 李佳, 朱蓝玉, 尹晓彤. 综合护理彩虹模型的研究进展及启示[J]. 中华护理杂志, 2024, 59(4): 496-501. |
[15] | 沈美頔, 高瑞桐, 许林琪, 黄奇芳, 付立, 程思铭, 王崇锟, 任利华. 理论评价工具在护理领域中的应用进展[J]. 中华护理杂志, 2024, 59(4): 502-505. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||