中华护理杂志 ›› 2025, Vol. 60 ›› Issue (5): 635-641.DOI: 10.3761/j.issn.0254-1769.2025.05.019
• 综述 • 上一篇
收稿日期:2024-06-25
出版日期:2025-03-10
发布日期:2025-03-03
通讯作者:
刘翔宇,E-mail:979596459@qq.com作者简介:伍慧霞:女,本科(硕士在读),E-mail:1976407929@qq.com
基金资助:
WU Huixia(
), CHENG Huifang, HUANG Shanshan, HUANG Yuansi, LIU Xiangyu(
)
Received:2024-06-25
Online:2025-03-10
Published:2025-03-03
摘要:
慢性病患者常伴有焦虑、抑郁等负性情绪,精准评估患者的负性情绪对制订有效的护理计划和干预措施尤为重要。传统的负性情绪评估存在主观、可及性限制等问题,难以做到精准的识别和评估。近年来,视觉技术因其准确、快速、实时、客观等特点,在情绪识别方面具有独特优势。该研究从视觉技术的发展进程及相关方法、在慢性病患者负性情绪评估中的应用及效果、存在的问题等方面进行综述,并提出相关对策,以期为慢性病患者负性情绪的评估提供参考。
伍慧霞, 成彗芳, 黄珊珊, 黄远思, 刘翔宇. 视觉技术在慢性病患者负性情绪评估中的应用进展[J]. 中华护理杂志, 2025, 60(5): 635-641.
WU Huixia, CHENG Huifang, HUANG Shanshan, HUANG Yuansi, LIU Xiangyu. Research progress on application of vision technology in negative emotion assessment for chronic disease patients[J]. Chinese Journal of Nursing, 2025, 60(5): 635-641.
| [1] | 杨宁, 王欣然. 信息化技术在重症患者负性情绪调节中的研究进展[J]. 中国护理管理, 2024, 24(6):934-937. |
| Yang N, Wang XR. Research progress on information techno-logy in the regulation of negative emotion in critical patients[J]. Chin Nurs Manag, 2024, 24(6):934-937. | |
| [2] |
张华果, 司文腾, 何宇迪, 等. 老年髋部骨折术后患者跌倒恐惧心理体验的质性研究[J]. 中华护理杂志, 2021, 56(4):527-533.
DOI URL |
| Zhang HG, Si WT, He YD, et al. Experiences of fear of falling in elderly patients following hip fracture surgery:a qualitative descriptive study[J]. Chin J Nurs, 2021, 56(4):527-533. | |
| [3] |
周小莉, 杨孟叶, 钱嘉璐, 等. 胎儿异常引产产妇产褥期心理体验的质性研究[J]. 中华护理杂志, 2019, 54(9):1359-1363.
DOI URL |
| Zhou XL, Yang MY, Qian JL, et al. Women’s experiences of termination of pregnancy for a fetal anomaly during the postpartum period:a qualitative study[J]. Chin J Nurs, 2019, 54(9):1359-1363. | |
| [4] | 刘松柏, 马临庆, 秦芳英, 等. 老年慢性病患者焦虑抑郁情况及影响因素的调查分析[J]. 国际精神病学杂志, 2024,51(1):143-146. |
| Liu SB, Ma LQ, Qin FY, et al. Investigation and analysis of anxiety and depression in elderly chronic disease patients and its influencing factors[J]. J Int Psychiatry,2024,51(1):143-146. | |
| [5] | Gu ZH, Qiu T, Yang SH, et al. A study on the psychological factors affecting the quality of life among ovarian cancer patients in China[J]. Cancer Manag Res, 2020,12:905-912. |
| [6] | Yang J, Xie QY, Chen B, et al. Screening for negative emotions and analysis of related factors among general surgery inpatients:a retrospective cross-sectional study[J]. Front Psychol, 2024, 15:1343164. |
| [7] | 马宁, 陈润滋, 张五芳, 等. 2020年中国精神卫生资源状况分析[J]. 中华精神科杂志, 2022, 55(6):459-468. |
| Ma N, Chen RZ, Zhang WF, et al. The mental health resources in Chinese mainland by 2020[J]. Chin J Psychiatry, 2022, 55(6):459-468. | |
| [8] |
Esteva A, Robicquet A, Ramsundar B, et al. A guide to deep learning in healthcare[J]. Nat Med, 2019, 25(1):24-29.
DOI PMID |
| [9] | 科技部, 教育部, 工业和信息化部, 等. 《关于加快场景创新以人工智能高水平应用促进经济高质量发展的指导意见》[J]. 机器人技术与应用, 2022(5):2. |
| Ministry of Science and Technology,Ministry of Education, Ministry of Industry and Information Technology, et al. Guiding opinions on accelerating scenario innovation and promoting high-quality economic development through high-level appli-cation of artificial intelligence[J]. Rob Tech App, 2022(5):2. | |
| [10] | Yang JY, Wang C, Xiang J, et al. Oral CT image processing based on oral CT image filtering algorithm[J]. Comput Intell Neurosci, 2022,2022:6041872. |
| [11] | Chen Z, Zhang CH, Li Z, et al. Automatic segmentation of ova-rian follicles using deep neural network combined with edge information[J]. Front Reprod Health, 2022,4:877216. |
| [12] | Pampouchidou A, Simos PG, Marias K, et al. Automatic assess-ment of depression based on visual cues:a systematic review[J]. IEEE Trans Affect Comput, 2019, 10(4):445-470. |
| [13] |
Mehrabian A, Ferris SR. Inference of attitudes from nonverbal communication in two channels[J]. J Consult Psychol, 1967, 31(3):248-252.
PMID |
| [14] | 袁钦湄, 杨峘, 张骏, 等. 基于深度学习算法的抑郁症表情与动作及其心理整合变化的过程分析[J]. 中国临床心理学杂志, 2023, 31(1):241-245,217. |
| Yuan QM, Yang H, Zhang J, et al. Analysis of facial expres-sions and movements based on deep learning and inner emotional experiences on a patient with depression[J]. Chin J Clin Psychol, 2023, 31(1):241-245,217. | |
| [15] |
Chen LY, Ma XT, Zhu N, et al. Facial expression recognition with machine learning and assessment of distress in patients with cancer[J]. Oncol Nurs Forum, 2021, 48(1):81-93.
DOI PMID |
| [16] | Zhou Y, Han W, Yao XY, et al. Developing a machine learn-ing model for detecting depression,anxiety,and apathy in older adults with mild cognitive impairment using speech and facial expressions:a cross-sectional observational study[J]. Int J Nurs Stud, 2023,146:104562. |
| [17] | Gavrilescu M, Vizireanu N. Predicting depression,anxiety,and stress levels from videos using the facial action coding system[J]. Sensors, 2019, 19(17):3693. |
| [18] | 周滢. 老年轻度认知障碍患者情绪问题多模态特征融合分类模型的构建与评价研究[D]. 北京: 北京协和医学院, 2022. |
| Zhou Y. Construction and evaluation of multi-modal feature fusion classification model for emotional problems of elderly patients with mild cognitive impairment[D]. Beijing: Peking Union Medical College, 2022. | |
| [19] | 成思哲, 冯博, 王胤丞, 等. 焦虑障碍高危人群自陈式问卷作答的眼动特征分析[J]. 空军军医大学学报, 2022, 43(2):136-140. |
| Cheng SZ, Feng B, Wang YC, et al. Analysis on eye move-ment characteristics of high-risk group of anxiety disorders when answering self-reported questionnaire[J]. J Air Forc Med Unive, 2022, 43(2):136-140. | |
| [20] | Zhang D, Liu X, Xu LH, et al. Effective differentiation bet-ween depressed patients and controls using discriminative eye movement features[J]. J Affect Disord, 2022,307:237-243. |
| [21] | Li M, Cao L, Zhai Q, et al. Method of depression classification based on behavioral and physiological signals of eye move-ment[J]. Complexity, 2020,2020:4174857. |
| [22] | 付心仪, 薛程, 李希, 等. 基于姿态的情感计算综述[J]. 计算机辅助设计与图形学学报, 2020, 32(7):1052-1061. |
| Fu XY, Xue C, Li X, et al. A review of body gesture based affective computing[J]. J Comput-Aid Des Comput Grap, 2020, 32(7):1052-1061. | |
| [23] |
Aviezer H, Trope Y, Todorov A. Body cues,not facial expres-sions,discriminate between intense positive and negative emotions[J]. Science, 2012, 338(6111):1225-1229.
DOI PMID |
| [24] | Dehcheshmeh TF, Majelan AS, Maleki B. Correlation between depression and posture(a systematic review)[J]. Curr Psychol, 2024, 43(33):27251-27261. |
| [25] | Richer R, Koch V, Abel L, et al. Machine learning-based detec- tion of acute psychosocial stress from body posture and move-ments[J]. Sci Rep, 2024, 14(1):8251. |
| [26] | 侯峰, 张明, 蔺向彬, 等. 基于行为与事件相关电位的机器学习重度抑郁识别研究[J]. 中国生物医学工程学报, 2023, 42(5):542-553. |
| Hou F, Zhang M, Lin XB, et al. Recognition of major de-pression using machine learning methods based on behavioral and event-related potentials[J]. Chin J Biomed Eng, 2023, 42(5):542-553. | |
| [27] | Horigome T, Sumali B, Kitazawa M, et al. Evaluating the seve-rity of depressive symptoms using upper body motion captu-red by RGB-depth sensors and machine learning in a clinical interview setting:a preliminary study[J]. Compr Psy-chiatry, 2020,98:152169. |
| [28] | Smrke U, Mlakar I, Lin S, et al. Language,speech,and facial expression features for artificial intelligence-based detection of cancer survivors’ depression:scoping meta-review[J]. JMIR Ment Health, 2021, 8(12):e30439. |
| [29] | Argolo F, Magnavita G, Mota NB, et al. Lowering costs for large-scale screening in psychosis:a systematic review and meta-analysis of performance and value of information for speech-based psychiatric evaluation[J]. Braz J Psychiatry, 2020, 42(6):673-686. |
| [30] | 李志营, 纪俊, 周书喆, 等. 基于深度学习语音分析的双相障碍患者情绪时相检测[J]. 中华精神科杂志, 2024, 57(4):207-212. |
| Li ZY, Ji J, Zhou SZ, et al. Emotional time-based detection of patients with bipolar disorder based on deep learning speech analysis[J]. Chin J Psychiatry, 2024, 57(4):207-212. | |
| [31] | 黄祥胜, 廖义龙, 张文劲, 等. 基于语音预训练模型的抑郁症识别研究[J]. 生物医学工程学杂志, 2024, 41(1):9-16. |
| Huang XS, Liao YL, Zhang WJ, et al. A research on depres-sion recognition based on voice pre-training model[J]. J Bio-med Eng, 2024, 41(1):9-16. | |
| [32] |
Faurholt-Jepsen M, Rohani DA, Busk J, et al. Voice analyses using smartphone-based data in patients with bipolar disor-der,unaffected relatives and healthy control individuals,and during different affective states[J]. Int J Bipolar Disord, 2021, 9(1):38.
DOI PMID |
| [33] | Le Glaz A, Haralambous Y, Kim-Dufor DH, et al. Machine learn-ing and natural language processing in mental health:systematic review[J]. J Med Internet Res, 2021,23(5):e15708. |
| [34] | Masukawa K, Aoyama M, Yokota S, et al. Machine learning models to detect social distress,spiritual pain,and severe physical psychological symptoms in terminally ill patients with cancer from unstructured text data in electronic medical records[J]. Palliat Med,2022, 36(8):1207-1216. |
| [35] |
Koleck TA, Topaz M, Tatonetti NP, et al. Characterizing shared and distinct symptom clusters in common chronic conditions through natural language processing of nursing notes[J]. Res Nurs Health, 2021, 44(6):906-919.
DOI PMID |
| [36] | Dobbs MF, McGowan A, Selloni A, et al. Linguistic correlates of suicidal ideation in youth at clinical high-risk for psychosis[J]. Schizophr Res, 2023,259:20-27. |
| [37] |
Glauser T, Santel D, DelBello M, et al. Identifying epilepsy psy-chiatric comorbidities with machine learning[J]. Acta Neurol Scand, 2020, 141(5):388-396.
DOI PMID |
| [38] | Li I, Pan J, Goldwasser J, et al. Neural natural language pro-cessing for unstructured data in electronic health records:a review[J]. Comput Sci Rev, 2022,46:100511. |
| [39] | Anders C, Arnrich B. Wearable electroencephalography and multi-modal mental state classification:a systematic literature review[J]. Comput Biol Med, 2022,150:106088. |
| [40] | Zhang JH, Yin Z, Chen P, et al. Emotion recognition using multi-modal data and machine learning techniques:a tutorial and review[J]. Inf Fusion, 2020,59:103-126. |
| [41] | Stolicyn A, Steele JD, Seriès P. Prediction of depression sym-ptoms in individual subjects with face and eye movement tracking[J]. Psychol Med, 2022, 52(9):1784-1792. |
| [42] | de Hond A, van Buchem M, Fanconi C, et al. Predicting depres-sion risk in patients with cancer using multimodal data[J]. Stud Health Technol Inform, 2023,302:817-818. |
| [43] | Mutawa AM, Hassouneh A. Multimodal real-time patient emotion recognition system using facial expressions and brain EEG signals based on machine learning and log-sync methods[J]. Biomed Signal Process Contr, 2024,91:105942. |
| [44] | 王东煜. 基于语音和面部图像融合的抑郁识别研究[D]. 兰州: 兰州大学, 2021. |
| Wang DY. Research on depression recognition based on speech and facial image fusion[D]. Lanzhou: Lanzhou University,2021. | |
| [45] | Xie WQ, Wang C, Lin ZX, et al. Multimodal fusion diagnosis of depression and anxiety based on CNN-LSTM model[J]. Comput Med Imaging Graph,2022,102:102128. |
| [46] |
栾琳琳, 丁敏, 卢振玲, 等. 虚拟现实技术在ICU危重症患者中的应用进展[J]. 中华护理杂志, 2021, 56(8):1255-1260.
DOI URL |
|
Luan LL, Ding M, Lu ZL, et al. Application progress of virtual reality technology in ICU critically ill patients[J]. Chin J Nurs, 2021, 56(8):1255-1260.
DOI URL |
|
| [47] |
陈利, 杨又. 区块链技术在临床护理中的应用进展[J]. 中华护理杂志, 2024, 59(2):250-256.
DOI URL |
|
Chen L, Yang Y. Research progress of blockchain technology in clinical nursing[J]. Chin J Nurs, 2024, 59(2):250-256.
DOI URL |
| [1] | 曾妃, 兰美娟, 顾培培, 梁江淑渊, 王衍蝶, 蔡凌云. 儿童双肺移植术后肺康复护理方案的构建及初步验证[J]. 中华护理杂志, 2025, 60(9): 1029-1035. |
| [2] | 阎寅至, 闻芳, 王敏, 周雪梅, 马金玲, 吴惠芳, 姚文英. 造血干细胞移植患儿运动康复分级护理方案的构建与应用研究[J]. 中华护理杂志, 2025, 60(9): 1036-1042. |
| [3] | 刘曦璇, 刘玉琳, 刘莎, 杨帆, 谢晓虹, 王紫娟, 刘丽芳, 魏红雨. 学龄期支气管哮喘患儿呼吸康复操的研制及效果评价[J]. 中华护理杂志, 2025, 60(9): 1043-1049. |
| [4] | 黄盼盼, 李丽玲, 胡晓静. 先天性心脏病婴儿早期运动康复的研究进展[J]. 中华护理杂志, 2025, 60(9): 1050-1055. |
| [5] | 陈丽鸥, 张文婷, 刘俊其, 王允琮, 王振霖, 齐赛, 杨娜. 肺叶体表投影定位结合肺段引流排痰技术对吸入性肺炎患者气道廓清的效果研究[J]. 中华护理杂志, 2025, 60(9): 1056-1061. |
| [6] | 杨娜娜, 程传丽, 曾慧, 符丹丹, 王燕, 陈悦, 冉宏敏, 范红静, 龙霞. 分级运动康复对慢性阻塞性肺疾病急性加重期患者的效果评价[J]. 中华护理杂志, 2025, 60(9): 1062-1067. |
| [7] | 曹云, 孙国珍, 陈凤, 季学丽, 闫梦婉, 敬雷, 钱堃. 改良式踝泵运动在脑卒中患者中的应用研究[J]. 中华护理杂志, 2025, 60(9): 1068-1074. |
| [8] | 谢敏, 漆文凯, 殷玲, 张旋, 赵如琴. 腹膜透析患者恐动症潜在剖面分析及影响因素研究[J]. 中华护理杂志, 2025, 60(9): 1080-1086. |
| [9] | 陈冰倩, 赵彬, 孙佳蓉, 郝四芳, 侯晓丽. 慢性牙周炎种植义齿患者口腔健康管理困境的质性研究[J]. 中华护理杂志, 2025, 60(9): 1087-1092. |
| [10] | 秦春兰, 吴振云, 钱红英, 赵茜, 孙锦庭. 慢性阻塞性肺疾病患者疾病自我控制体验的质性研究[J]. 中华护理杂志, 2025, 60(9): 1093-1098. |
| [11] | 李子崴, 冯丽娟, 陈旭升, 黄毅, 杨洁. PICC置管患者运动恐惧评估量表的编制及应用[J]. 中华护理杂志, 2025, 60(9): 1099-1106. |
| [12] | 程志强, 张宝珍, 汤利萍, 李静, 夏娇云, 魏雪岩, 龚智娴, 张美珍, 黎露思. 尿失禁患者疾病认知与态度量表的汉化及初步应用[J]. 中华护理杂志, 2025, 60(9): 1107-1112. |
| [13] | 杨静, 王华芬, 卢芳燕, 鲍瑞洁, 朱莉. 肝移植患儿术后营养状况变化的影响因素分析及护理启示[J]. 中华护理杂志, 2025, 60(9): 1113-1119. |
| [14] | 石美琴, 吴建芳, 张铎, 吴春萍, 陈玲, 陶磊. 1例全喉切除辅助发音管Ⅰ期植入患者术后喉功能康复的护理[J]. 中华护理杂志, 2025, 60(9): 1120-1123. |
| [15] | 谷茜, 黄玺, 施伟雄, 吴静, 谭若铭, 王枫. 1例T细胞免疫治疗后并发细胞因子释放综合征患者的护理[J]. 中华护理杂志, 2025, 60(9): 1124-1127. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||