中华护理杂志 ›› 2021, Vol. 56 ›› Issue (2): 212-217.DOI: 10.3761/j.issn.0254-1769.2021.02.009
收稿日期:
2020-06-18
出版日期:
2021-02-15
发布日期:
2021-02-07
通讯作者:
作者简介:
曲超然:男,本科(硕士在读),E-mail: qvchaoran@outlook.com
基金资助:
QU Chaoran,WANG Qing,HAN Lin(),JIANG Xiaoying
Received:
2020-06-18
Online:
2021-02-15
Published:
2021-02-07
摘要:
随着护理信息化管理的不断推进,数量庞大的多重结构数据的收集和重新利用与人工智能领域密切结合已成为趋势。压力性损伤在管理方面存在大量多重结构数据,其管理方法与人工智能领域的结合已从前沿技术逐渐转变到现实应用阶段,推动着压力性损伤管理由“制度管理”向“数据管理”转变。该文从应用基础、测量和分析创面、风险预测模型3个方面,对机器学习算法在压力性损伤中的应用研究进行综述,旨在为推动压力性损伤信息化管理提供参考。
曲超然, 王青, 韩琳, 姜小鹰. 机器学习算法在压力性损伤管理中的应用进展[J]. 中华护理杂志, 2021, 56(2): 212-217.
QU Chaoran, WANG Qing, HAN Lin, JIANG Xiaoying. A literature review on the application of machine learning algorithms in pressure injury management[J]. Chinese Journal of Nursing, 2021, 56(2): 212-217.
[1] | Gefen A, Weihs D . Cytoskeleton and plasma-membrane damage resulting from exposure to sustained deformations:a review of the mechanobiology of chronic wounds[J]. Med Eng Phys, 2016,8(9):828-833. |
[2] | Hartmann CW, Solomon J, Palmer JA , et al. Contextual facilitators of and barriers to nursing home pressure ulcer prevention[J]. Adv Skin Wound Care, 2016,29(5):226-238. |
[3] | 江小琼, 蔡福满, 侯祥庆 , 等. 皮肤温度监测在压力性损伤风险预警中的应用研究[J]. 中华护理杂志, 2020,55(1):32-38. |
Jiang XQ, Cai FM, Hou XQ , et al. Application research of skin temperature monitoring in early warning of pressure injury[J]. Chin J Nurs, 2020,55(1):32-38. | |
[4] | Sun X, Ni P, Wu M , et al. A clinical epidemiological profile of chronic wounds in wound healing department in Shanghai[J]. Int J Low Extremity Wounds, 2017,16(1):36-44. |
[5] | European Pressure Ulcer Advisory Panel, National Pressure Injury Advisory Panel, Pan Pacific Pressure Injury Alliance. Prevention and treatment of pressure ulcers/injuries:clinical practice guideline[S]. EPUAP/NPIAP/PPPIA: 2019. |
[6] | Westbrook JI, Ling L, Lehnbom EC , et al. What are incident reports telling us? A comparative study at two Australian hospitals of medication errors identified at audit,detected by staff and reported to an incident system[J]. Int J Qual Health Care, 2015,27(1):1-9. |
[7] | 张文娴, 崔妙玲, 应燕萍 . 构建医院护理差错及不良事件报告系统的研究进展[J]. 中华护理杂志, 2008,43(12):1142-1144. |
Zhang WX, Cui ML, Ying YP . Establishment of nursing errors and adverse events reporting system in hospitals[J]. Chin J Nurs, 2008,43(12):1142-1144. | |
[8] | 陈越, 皮红英, 宋杰 , 等. 临床决策支持系统在脑卒中患者护理中的应用进展[J]. 中华护理杂志, 2019,54(12):1898-1901. |
Chen Y, Pi HY, Song J , et al. Research progress on clinical decision support system for stroke nursing[J]. Chin J Nurs, 2019,54(12):1898-1901. | |
[9] | 丁四清, 陆晶, 秦春香 , 等. 数据挖掘在护理不良事件管理中的应用进展[J]. 中华护理杂志, 2019,54(6):873-877. |
Ding SQ, Lu J, Qin CX , et al. Application progress on data mining for nursing adverse event management[J]. Chin J Nurs, 2019,54(6):873-877. | |
[10] | 李萍, 史婷奇, 陆瑶 , 等. 护士长决策护理质量指标管理系统的构建[J]. 中华护理杂志, 2019,54(10):1540-1545. |
Li P, Shi TQ, Lu Y , et al. Quality index management system for head nurse's decision based on business intelligence[J]. Chin J Nurs, 2019,54(10):1540-1545. | |
[11] | 夏冬云, 史婷奇, 陆巍 , 等. 压力性损伤临床决策支持系统的研发与应用[J]. 中华护理杂志, 2020,55(1):50-54. |
Xia DY, Shi TQ, Lu W , et al. Development and application of clinical decision support system for pressure injury[J]. Chin J Nurs, 2020,55(1):50-54. | |
[12] | Agarwal R, Gao GD, Roches CD , et al. Research commentary:the digital transformation of healthcare:current status and the road ahead[J]. Inform Syst Res, 2010,21(4):796-809. |
[13] | Ward MJ, Marsolo KA, Froehle CM . Applications of business analytics in healthcare[J]. Bus Horiz, 2014,57(5):571-582. |
[14] | Wang YC, Hajli N . Exploring the path to big data analytics success in healthcare[J]. J Bus Res, 2017,70:287-299. |
[15] | Jiang P, Winkley J, Zhao C , et al. An intelligent information forwarder for healthcare big data systems with distributed wearable sensors[J]. Ieee Syst J, 2016,10(3):1147-1159. |
[16] | Srinivasan U, Arunasalam B . Leveraging big data analytics to reduce healthcare costs[J]. It Prof, 2013,15(6):21-28. |
[17] | Pramanik I, Lau RYK, Azad AK , et al. Healthcare informatics and analytics in big data[J]. Expert Syst Appl, 2020,152(15):113-388. |
[18] | Goodwin TR, Dina DF . A customizable deep learning model for nosocomial risk prediction from critical care notes with indirect supervision[J]. J Am Med Inform Assn, 2020,27(4):567-576. |
[19] | Zahia S, Garcia Zapirain MB, Sevillano X , et al. Pressure injury image analysis with machine learning techniques:a systematic review on previous and possible future methods[J]. Artif Intell Med, 2020,102:101742. |
[20] | Raju D, Su X, Patrician PA , et al. Exploring factors associated with pressure ulcers:a data mining approach[J]. Int J Nurs Stud, 2014,52(1):102-111. |
[21] | Munoz N, Posthauer ME, Cereda E , et al. The role of nutrition for pressure injury prevention and healing:the 2019 international clinical practice guideline recommendations[J]. Adv Skin Wound Care, 2020,33(3):123-136. |
[22] | Ortiz OP, Sierra-Sosa D, Zapirain BG . Pressure ulcer image segmentation technique through synthetic frequencies generation and contrast variation using toroidal geometry[J]. Bio Med Central, 2017,16(1):4. |
[23] | Delode J, Rosow E, Roth C , et al. A wound-healing monitoring system[J]. IRBM, 2001,22(1):49-52. |
[24] | Bochko V, Valisuo P, Harju T , et al. Lower extremity ulcer image segmentation of visual and near infrared imagery[J]. Skin Res Technol, 2010,16(2):190-197. |
[25] | Veredas FJ, Mesa H, Morente L . Efficient detection of wound-bed and peripheral skin with statistical colour models[J]. Med Biol Eng Comput, 2015,53(4):345-359. |
[26] | Wang CH, Yan XC, Smith M, et al. A unified framework for automatic wound segmentation and analysis with deep convolutional neural networks [C]. Milan:Conf Proc Ieee Eng Med Biol Soc, 2015: 2415-2418. |
[27] | Zahia S, Sierra-Sosa D, Garcia-Zapirain B , et al. Tissue classification and segmentation of pressure injuries using convolutional neural networks[J]. Comput Meth Prog Bio, 2018,159:51-58. |
[28] | Garcia-Zapirain B, Sierra-Sosa D, Ortiz D , et al. Efficient use of mobile devices for quantification of pressure injury images[J]. Technol Health Care, 2018,26(S1):269-280. |
[29] | Kosmopoulos DI, Tzevelekou FL . Automated pressure ulcer lesion diagnosis for telemedicine systems[J]. Ieee Eng Med Biol, 2007,26(5):18-22. |
[30] | Wannous H, Lucas Y, Treuillet S . Enhanced assessment of the wound-healing process by accurate multiview tissue classification[J]. Ieee T Med Imaging, 2011,30(2):315-326. |
[31] | Veredas FJ, Luque-Baena RM, Martin-Santos FJ , et al. Wound image evaluation with machine learning[J]. Neurocomputing, 2015,164:112-122. |
[32] | Kawahara J, Hamarneh G. Multi-resolution-tract CNN with hybrid pretrained and skin-lesion trained layers [C]. Springer:Intervention Workshop on Machine Learning in Medical Imaging, 2016: 164-171. |
[33] | Litjens G, Kooi T, Bejnordi BE , et al. A survey on deep learning in medical image analysis[J]. Med Image Anal, 2017,42(9):60-88. |
[34] | Shin HC, Roth HR, Gao M , et al. Deep convolutional neural networks for computer-aided detection:CNN,architectures,dataset characteristics and transfer learning[J]. Ieee T Med Imaging, 2016,35(5):1285-1298. |
[35] | Demyanov S, Chakravorty R, Abedini M, et al. Classification of dermoscopy patterns using deep convolutional neural networks [C]//2016 IEEE 13th International Symposium on Biomedical Imaging(ISBI 2016). IEEE, 2016. |
[36] | Goldstein BA, Navar AM, Pencina MJ , et al. Opportunities and challenges in developing risk prediction models with electronic health records data:a systematic review[J]. J Am Med Inform Assoc, 2017,24(1):198-208. |
[37] | Wilson PW, D'Agostino RB, Levy D,et al. Prediction of coronary heart disease using risk factor categories[J]. Circulation, 1998,97(18):1837-1847. |
[38] | Hersh WR, Weiner MG, Embi PJ , et al. Caveats for the use of operational electronic health record data in comparative effectiveness research[J]. Med Care, 2013,51(8):30-37. |
[39] | Raju D, Su X, Patrician PA , et al. Exploring factors associated with pressure ulcers:a data mining approach[J]. Int J Nurs Stud, 2015,52(1):102-111. |
[40] | Alderden J, Pepper GA, Wilson A , et al. Predicting pressure injury in critical care patients:a machine-learning model[J]. Am J Crit Care, 2018,27(6):461-468. |
[41] | Setoguchi Y, Ghaibeh AA, Mitani K , et al. Predictability of pressure ulcers based on operation duration,transfer activity,and body mass index through the use of an alternating decision tree[J]. J Med Invest, 2016,63(3):248-255. |
[42] | 宋杰 . 基于大数据技术的皮肤损伤护理不良事件预测模型的构建和平台研发[D]. 北京:中国人民解放军医学院, 2018. |
Song J . Predictive model construction and software development of skin damage care adverse events with big data technology[D]. Beijing:Medical School of Chinese PLA, 2018. | |
[43] | Goodwin TR, Demner-Fushman D . A customizable deep learning model for nosocomial risk prediction from critical care notes with indirect supervision[J]. J Am Med Inform Assoc, 2020,27(4):567-576. |
[1] | 韩冬芳, 田甜, 高畅, 张婧珺, 李小妹. 肺结核患者健康促进行为与健康心理控制源关系的混合研究[J]. 中华护理杂志, 2024, 59(9): 1029-1036. |
[2] | 司茜茜, 王莹, 赵福云, 马晓骁, 刘均娥. A型主动脉夹层患者Ⅰ期心肺康复护理方案的构建及应用[J]. 中华护理杂志, 2024, 59(9): 1037-1042. |
[3] | 沈支佳, 陈新宇, 钱志杰, 殷丽梅. 反复低血糖患者血糖管理行为退化特征的混合研究[J]. 中华护理杂志, 2024, 59(9): 1043-1050. |
[4] | 王丽梅, 李露, 李玉霞, 喻鹏, 罗倩, 张翀旎. 糖尿病周围神经病理性疼痛患者运动恐惧现状及影响因素分析[J]. 中华护理杂志, 2024, 59(9): 1051-1056. |
[5] | 丁慧敏, 戴莉敏, 蔡冬青, 杨群. 糖尿病前期患者自我管理潜在剖面分析及影响因素研究[J]. 中华护理杂志, 2024, 59(9): 1057-1064. |
[6] | 刘海婷, 王咏梅, 郑贝贝, 蔡丽丽, 叶林斌, 吴佳芸, 宁丽, 李益民, 陈为霞. 冠心病合并糖尿病患者药物素养自评量表的编制及信效度检验[J]. 中华护理杂志, 2024, 59(9): 1065-1071. |
[7] | 陈丽霞, 施慧, 朱德政, 曾莹. 成人低血糖恐惧评估工具的质量评价[J]. 中华护理杂志, 2024, 59(9): 1072-1079. |
[8] | 中国研究型医院学会过敏医学专业委员会, 中华医学会变态反应分会过敏性疾病护理学组(筹), 中华预防医学会过敏病预防与控制专业委员会, (执笔:王青 刘君 支凡 万文锦 田丰英 霍晓鹏 周文华 杨永仕 王田田 孙劲旅). 变应原特异性免疫治疗皮下注射护理的专家共识[J]. 中华护理杂志, 2024, 59(9): 1080-1083. |
[9] | 李琪, 苏晴晴, 张瑶瑶, 王田田, 吕静, 李亚可, 李海燕. 全膝关节置换患者关节遗忘变化轨迹及影响因素研究[J]. 中华护理杂志, 2024, 59(9): 1084-1090. |
[10] | 刘娅, 刘晓晴, 杨雪凝, 王平, 刘学奎, 罗丹. 结肠镜检查患者肠道准备失败风险预测模型的构建及验证[J]. 中华护理杂志, 2024, 59(9): 1091-1098. |
[11] | 孙晓晴, 张爱霞, 朱珠, 樊雪梅, 梅士娟, 黄欣欣, 丛胜楠, 谢红燕. 分娩心理创伤评估量表的编制及信效度检验[J]. 中华护理杂志, 2024, 59(9): 1099-1105. |
[12] | 谢玉生, 黄蓉蓉, 赵雪, 马蕾, 胡雁, 杨倩, 王乾沙, 明玥. 成人重度烧伤患者肠内肠外营养的证据总结[J]. 中华护理杂志, 2024, 59(9): 1106-1113. |
[13] | 李旭琴, 冯洁惠, 黄昉芳, 俞超, 梁诗雨, 王晓, 李旭芳, 朱含. 1例行机械循环辅助桥接心脏移植患者的术前护理[J]. 中华护理杂志, 2024, 59(9): 1114-1117. |
[14] | 贾晓静, 陈一竹, 许志英, 和霞, 耿超. 1例尿黑酸尿症双膝关节置换术后患者并发急性心肌梗死的护理[J]. 中华护理杂志, 2024, 59(9): 1118-1121. |
[15] | 顾培培, 曾妃, 兰美娟, 梁江淑渊, 郭璐瑶, 蔡凌云, 朱岩, 郭鸽. 肺移植患者衰弱影响因素的Meta分析[J]. 中华护理杂志, 2024, 59(9): 1122-1129. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||