中华护理杂志 ›› 2019, Vol. 54 ›› Issue (11): 1644-1647.DOI: 10.3761/j.issn.0254-1769.2019.11.009
收稿日期:
2019-03-22
出版日期:
2019-11-15
发布日期:
2019-11-22
通讯作者:
作者简介:
李梦婷:女,本科(硕士在读),E-mail:21818472@zju.edu.cn
基金资助:
Received:
2019-03-22
Online:
2019-11-15
Published:
2019-11-22
摘要:
该文综述了新生儿疼痛表情数据库的建立、新生儿疼痛表情自动识别流程、新生儿疼痛表情自动识别系统的类型、疼痛表情识别系统的应用与不足,以期加强护士对新生儿疼痛表情识别系统的了解,为开展进一步研究提供参考依据。
李梦婷, 陈朔晖. 新生儿疼痛表情自动识别系统的研究进展[J]. 中华护理杂志, 2019, 54(11): 1644-1647.
[1] | 王亚静, 李杨, 孙静 , 等. 新生儿重症监护病房患儿操作性疼痛现状调查[J]. 护理学杂志, 2019,34(11):20-23. |
[2] | Orovec A, Disher T, Caddell K , et al. Assessment and management of procedural pain during the entire neonatal intensive care unit hospitalization[J]. Pain Manag Nurs, 2019.DOI: 10.1016/j.pmn.2018.11.016. |
[3] | Walker SM . Translational studies identify long-term impact of prior neonatal pain experience[J]. Pain, 2017,158(4):S29-S42. |
[4] | Watterberg KL, Cummings JJ, Benitz W E , et al. Prevention and management of procedural pain in the neonate:an update[J]. Pediatrics, 2016,137(2):e20154271-e20154283. |
[5] | Boyle EM, Bradshaw J, Blake KI . Persistent pain in neonates:challenges in assessment without the aid of a clinical tool[J]. Acta Paediatr, 2018,107(1):63-67. |
[6] | 沈巧, 郑显兰, 林紫 , 等. 66家医疗机构儿童疼痛管理现状调查[J]. 中国护理管理, 2019,19(2):187-193. |
[7] | Anand KJS, Eriksson M, Boyle EM , et al. Assessment of continuous pain in newborns admitted to NICUs in 18 European countries[J]. Acta Paediatr, 2017,106(8):1248-1259. |
[8] | Pölkki T, Korhonen A, Laukkala H . Nurses’ perceptions of pain assessment and management practices in neonates:a cross-sectional survey[J]. Scand J Caring Sci, 2018,32(2):725-733. |
[9] | Collados-Gómez L, Camacho-Vicente V, González-Villalba M , et al. Neonatal nurses’ perceptions of pain management[J]. Enferm Intensiva, 2018,29(1):41-47. |
[10] | Zamzmi G, Kasturi R, Goldgof D , et al. A review of automated pain assessment in infants:features,classification tasks,and databases[J]. IEEE Rev Biomed Eng, 2018,11:77-96. |
[11] | 徐东娟, 王克芳 . 新生儿疼痛的评估工具[J]. 中华护理杂志, 2005,40(10):790-792. |
[12] | Kappesser J, Kamper-Fuhrmann E, de Laffolie J , et al. Pain-specific reactions or indicators of a general stress response:investigating the discriminant validity of 5 well-established neo-natal pain assessment tools[J]. Clin J Pain, 2019,35(2):101-110. |
[13] | Relland LM, Gehred A, Maitre NL . Behavioral and physiological signs for pain assessment in preterm and term neonates during a nociception-specific response:a systematic review[J]. Pediatr Neurol, 2019,90:13-23. |
[14] | Kappesser J, de Laffolie J, Faas D , et al. Comparison of two neonatal pain assessment tools(children and infant’s postoperative pain scale and the neonatal facial coding system-revised)and their relations to clinicians’ intuitive pain estimates[J]. Eur J Pain, 2019,23(4):708-718. |
[15] | Schiavenato M, Byers JF, Scovanner P , et al. Neonatal pain facial expression:evaluating the primal face of pain[J]. Pain, 2008,138(2):460-471. |
[16] | Peters JW, Koot HM, Grunau RE , et al. Neonatal facial coding system for assessing postoperative pain in infants:item reduction is valid and feasible[J]. Clin J Pain, 2003,19(6):353-363. |
[17] | Heiderich TM, Leslie AT, Guinsburg R . Neonatal procedural pain can be assessed by computer software that has good sensitivity and specificity to detect facial movements[J]. Acta Paediatr, 2015,104(2):e63-e69. |
[18] | 柳毅 . 基于卷积神经网络的新生儿疼痛表情识别方法研究[D]. 南京:南京邮电大学, 2018. |
[19] | 蔡飞 . 基于三维卷积神经网络的新生儿疼痛表情识别[D]. 南京:南京邮电大学, 2018. |
[20] | Brahnam S, Chuang CF, Sexton RS , et al. Machine assessment of neonatal facial expressions of acute pain[J]. Decis Support Syst, 2007,43(4):1242-1254. |
[21] | Brahnam S, Nanni L McMurtrey S , et al. Neonatal pain detection in videos using the iCOPEvid dataset and an ensemble of descriptors extracted from Gaussian of local descriptors[J]. Appl Comput Inform, 2019. DOI: 10.1016/j.aci.2019.05.003. |
[22] | 朱金朵 . 基于深度学习的新生儿疼痛表情识别[D]. 南京:南京邮电大学, 2018. |
[23] | Zhi RC, Zamzmi GZD, Goldgof D , et al. Automatic infants’ pain assessment by dynamic facial representation:effects of profile view,gestational age,gender,and race[J]. J Clin Med, 2018,7(7):E173. |
[24] | Naik T, Mcgregor C, James A . Automated partial premature infant pain profile scoring using big data analytics [C]//1st International IEEE Life-Science Conference,IUltimo,Australia, 2017: 246-249. |
[25] | Parodi E, Melis D, Boulard L , et al. Automated newborn pain assessment framework using computer vision techniques [C]//International Conference on Bioinformatics Research and Applications,Barcelona,Spain, 2017: 31-36. |
[26] | Brahnam S, Chuang CF, Shih FY , et al. Machine recognition and representation of neonatal facial displays of acute pain[J]. Artif Intell Med, 2006,36(3):211-222. |
[27] | Nanni L, Brahnam S, Lumini A . A local approach based on a Local Binary Patterns variant texture descriptor for classifying pain states[J]. Expert Syst Appl, 2010,37(12):7888-7894. |
[28] | 李玉静 . 基于Gabor小波变换和LBP结合的新生儿疼痛表情识别研究[D]. 南京:南京邮电大学, 2014. |
[29] | 余益团 . 基于LBP-top特征的新生儿疼痛表情识别研究[D]. 南京:南京邮电大学, 2016. |
[30] | Fotiadou E, Zinger S, Tjon A Ten WE , et al. Video-based facial discomfort analysis for infants[C]// Conference on Visual Information Processing and Communication V, San Francisco, CA, 2014:90290F-90290F-14. |
[31] | Gholami B, Haddad WM, Tannenbaum AR . Relevance vector machine learning for neonate pain intensity assessment using digital imaging[J]. IEEE Trans Biomed Eng, 2010,57(6):1457-1466. |
[32] | Zamzami G, Ruiz G, Goldgof D , et al. Pain assessment in infants:towarsds spotting pain expression based on infants’ facial strain [C]//11th IEEE International Conference and Work-shops on Automatic Face and Gesture Recognition(FG),Ljubljana,Slovenia, 2015: 1-5. |
[33] | 卢官明, 李晓南, 李海波 . 新生儿疼痛面部表情识别方法的研究[J]. 光学学报, 2008,28(11):2109-2114. |
[34] | 李旭 . 基于分块加权局部二值模式的新生儿疼痛表情识别[D]. 南京:南京邮电大学, 2014. |
[35] | 卢官明, 石婉婉, 李旭 , 等. 基于LBP特征和稀疏表示的新生儿疼痛表情识别[J]. 南京邮电大学学报(自然科学版), 2015,35(1):19-25. |
[36] | 刘陶鸿 . 基于视频序列的新生儿疼痛表情识别系统的研究[D]. 南京:南京邮电大学, 2016. |
[37] | Sun Y, Shan C, Tan T . Video-based discomfort detection for infants[J]. Mach Vision Appl, 2019,30(5):933-944. |
[38] | 彭进业, 杨瑞靖, 冯晓毅 , 等. 人脸疼痛表情识别综述[J]. 数据采集与处理, 2016,31(1):43-55. |
[39] | 谢萍, 周慧勤, 张灿 , 等. 全程模块化智能护理评估系统的应用与效果评价[J]. 中华护理杂志, 2017,52(7):863-866. |
[40] | 刘晓娜, 潘红英 . 护理决策支持系统的应用进展[J]. 中华护理杂志, 2018,53(6):735-739. |
[1] | 刘梦媛, 田凌云, 蒋敬, 冯心语, 李卫娟, 罗慧, 李映兰. 护士在跨专业合作中伦理冲突的范围综述[J]. 中华护理杂志, 2024, 59(9): 1138-1144. |
[2] | 崔怡爽, 何细飞, 王昭昭, 程捷, 杨伟梅, 陆丽娟. 共享决策在急性冠脉综合征患者中应用的范围综述[J]. 中华护理杂志, 2024, 59(9): 1145-1152. |
[3] | 张小艳, 李学靖, 杨丹, 孟美琪, 郝玉芳. 老年人久坐行为干预策略的范围综述[J]. 中华护理杂志, 2024, 59(8): 1012-1020. |
[4] | 余良梦, 俞小玲, 李佳镁, 阮晓芬. 证据图谱在护理学领域的应用进展[J]. 中华护理杂志, 2024, 59(8): 1021-1025. |
[5] | 房钰, 郝媛媛, 张晨, 董莹, 吴赢鑫, 姜桂春. 癌症患者决策疲劳的研究进展及护理启示[J]. 中华护理杂志, 2024, 59(8): 941-946. |
[6] | 周樊华, 甘霖, 梅艳丽, 杜芬, 严冶, 熊莉娟. 中西医结合病房患者入院护理评估单的研制及信效度检验[J]. 中华护理杂志, 2024, 59(7): 802-807. |
[7] | 崔尚卿, 郭宏卿, 吴金花, 霍秋桂. 1例重度喉软骨软化病合并屏气发作新生儿的急救与护理[J]. 中华护理杂志, 2024, 59(7): 859-864. |
[8] | 叶磊, 夏广惠, 陈方梅, 田宇燕, 祁玮. 虚拟现实技术在癌症相关认知障碍患者中应用的范围综述[J]. 中华护理杂志, 2024, 59(7): 882-889. |
[9] | 熊桃, 谭雪梅, 罗静, 李阳, 郑予希, 李奉玲, 魏雪梅, 崔丽君, 罗澜峻. 脑卒中患者康复动机评估工具的研究进展[J]. 中华护理杂志, 2024, 59(7): 890-896. |
[10] | 陈钰妹, 赵惠芬, 赵晓珊, 赵梅晶, 彭玉美, 沈丽琴. 妊娠期糖尿病孕妇风险感知量表的编制及信效度检验[J]. 中华护理杂志, 2024, 59(6): 677-684. |
[11] | 颜钰, 龚姝, 段棣飞, 马登艳. 知识图谱在慢性病患者饮食管理中的应用进展[J]. 中华护理杂志, 2024, 59(6): 753-757. |
[12] | 邓艺帆, 王建宁, 彭梦婷, 洪杜. 决策辅助工具在失智症患者照护中应用的范围综述[J]. 中华护理杂志, 2024, 59(6): 758-763. |
[13] | 张淼淼, 张丽, 闫荣, 丁敏, 孟祥敏, 徐萍. 网络哀伤辅导在安宁疗护中的应用进展[J]. 中华护理杂志, 2024, 59(5): 556-561. |
[14] | 徐榕璟, 贺旭妍, 贾守梅. 骨科老年患者术后运动恐惧的范围综述[J]. 中华护理杂志, 2024, 59(5): 626-633. |
[15] | 王思琦, 范玲. 护士出勤主义行为的研究进展[J]. 中华护理杂志, 2024, 59(5): 634-640. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||